Comparative Analysis of PCA and Wavelet based Motion Artifact Detection and Spectral Characterization in W-ECG

نویسندگان

  • RAHUL KHER
  • TANMAY PAWAR
  • VISHVJIT THAKAR
چکیده

The use of wearable ECG recorders is becoming common nowadays for the people suffering from cardiac disorders. Although it is a convenient option for hospitalization, it has an inherent drawback of recorded ECG being contaminated by motion artifacts due to various body movement activities of the wearer. In this paper, the spectral characteristics of motion artifacts occurring in wearable ECG (W-ECG) signals have been studied using principal component analysis (PCA) and wavelet transform. The residuals of PCA and wavelet transform characterize the spectral behaviour of the motion artifacts occurring in WECG signals. The ECG signals have been acquired from Biopac MP-36 system and a self-developed wearable ECG recorder. The performance is evaluated by power spectral density (PSD) plots of PCA residual errors as well as statistical parameters like mean, median and variance of PCA and wavelet residuals. The PSD plots indicate that the peak frequency of the motion artifacts occurring due to various body movements (like left arm up-down, right arm up-down, left and right legs up-down, waist twist, walking and sitting up-down) is located around 5-15 Hz, coinciding with the ECG spectrum. Key-Words: Wearable ECG (W-ECG), PCA, Wavelet transform, Motion artifacts, PSD

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Framework for Delineation of Ambulatory Holter ECG Events via Analysis of a Multiple-Order Derivative Wavelet-Based Measure

In this study, a new long-duration holter electrocardiogram (ECG) major events detection-delineation algorithm is described which operates based on the false-alarm error bounded segmentation of a decision statistic with simple mathematical origin. To meet this end, first three-lead holter data is pre-processed by implementation of an appropriate bandpass finite-duration impulse response (FIR) f...

متن کامل

Comparative Analysis of Wavelet-based Feature Extraction for Intramuscular EMG Signal Decomposition

Background: Electromyographic (EMG) signal decomposition is the process by which an EMG signal is decomposed into its constituent motor unit potential trains (MUPTs). A major step in EMG decomposition is feature extraction in which each detected motor unit potential (MUP) is represented by a feature vector. As with any other pattern recognition system, feature extraction has a significant impac...

متن کامل

Effect of the frequency content of earthquake excitation on damage detection in steel frames

In this study, the effect of earthquake frequency content and noise effects on damage detection has been investigated. For this purpose, the damage was defined as nonlinear behavior of beams and columns, and several ground motion records were scaled so that some elements yield under the applied excitation. Then the acceleration response data of each floor obtained using the nonlinear dynamic an...

متن کامل

A Review on ECG based Human Authentication

Biometric systems are mostly used for human identification and authentication. Recent developments have shown that for person identification ECG can be used as more powerful tool as it give more reliable and accurate results even in abnormal cases than other biometric characteristics. Credential based authentication methods (e.g., passwords, PINs, certificates) are not well-suited for remote he...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014